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We have conducted wave packet simulations of excited-state dynamics of 1,3-dibromopropane (DBP) with
the aim of reproducing the experimental results of the gas-phase pump-probe experiment by Kötting et al.
[Kötting, C.; Diau, E. W.-G.; Sølling, T. I.; Zewail, A. H. J. Phys. Chem. A 2002, 106, 7530]. In the experiment,
DBP is excited to a Rydberg state 8 eV above the ground state. The interpretation of the results is that a
torsional motion of the bromomethylene groups with a vibrational period of 680 fs is activated upon excitation.
The Rydberg state decays to a valence state, causing a dissociation of one of the carbon bromine bonds on
a time scale of 2.5 ps. Building the theoretical framework for the wave packet propagation around this model
of the reaction dynamics, the simulations reproduce, to a good extent, the time scales observed in the experiment.
Furthermore, the simulations provide insight into how the torsion motion influences the bond breakage, and
we can conclude that the mechanism that delays the dissociation is solely the electronic transition from the
Rydberg state to the valence state and does not involve, for example, intramolecular vibrational energy
redistribution (IVR).

1. Introduction

The real-time investigation of molecular motion in a chemical
reaction is the ultimate goal of the femtochemistry discipline.
This goal is achieved by using a fs pulse to generate a
superposition of vibrational eigenstates, a wave packet that
exhibits a time-dependent behavior.1 It is this property that
makes it possible to probe nuclear motion. In some cases, the
initially activated dynamics includes unreactive nuclear motions
that influence the reactive degrees of freedom.2-8 An example
of such a behavior is found in the fs pump-probe experiment
on gaseous 1,3-dibromopropane (DBP) done by Kötting et
al.9The decay of the number of parent molecules can be fitted to
a single exponential with a decay time of 2.5 ps. The fragment
resulting from a carbon-bromine bond breakage exhibits a
corresponding rise time. The most fascinating aspect of the
experiment is that an oscillation is superimposed on the experi-
mental signal. The authors ascribe this to the creation of a wave
packet by a two-photon excitation onto an n f 5p Rydberg state
8 eV above the ground state. The wave packet consists of
vibrational eigenstates of a low-frequency symmetrical torsion
motion of the two bromomethylene groups. The vibration, which
corresponds well to a ground-state normal mode,9 is sketched in
Figure 1. The motion of the wave packet along the torsion
coordinate can be followed by ionization with the probe pulse.9

Thus, the interpretation of the experiment is that the period of
the oscillations of 680 fs corresponds to the vibrational period
of the torsion motion. Ab initio calculations show9 that the
Rydberg state is crossed by an n f σ* valence state which is
repulsive in the carbon-bromine bond stretching coordinate.
Thus, the bond breakage is believed to occur after a transition
from the bound Rydberg state to the repulsive valence state.
This model of the reaction dynamics is sketched in Figure 2.

The aim of this work is to (semi)quantitatively reproduce the
measured time scales by conducting wave packet simulations
in the framework of the above-presented model to support the
interpretation of Kötting et al.9

Although creating the link between theory and experiment
in DBP is an interesting problem in itself, the reaction dynamics
of DBP also represents a case of general interest. DBP is a
representative of molecular systems that are characterized by
the fascinating property of being potentially reactive systems
exhibiting unreactive motion interleaving the reactive dynamics.
The bottleneck that guides from the unreactive to the reactive
dynamics can be electronic transitions2-4,7,8 or intramolecular
vibrational energy redistribution (IVR).5,6 In the case of DBP,
it is not possible from the experimental data to judge whether
the process that delays the bond breakage also involves IVR.
Such detailed insights into the dynamics can be provided by a
wave packet simulation.
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Figure 1. The symmetrical torsion motion.
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Simulating the complex behavior of DBP presents a challenge
and demands the use of state-of-the-art methods. In this respect,
we have been inspired by the recent work on nonadiabatic wave
packet dynamics of the photodissociation of bromoacetyl
chloride done by Lasorne et al.10 and develop the theoretical
framework for DBP in a similar way. The theoretical setup is
presented in section 2. Computational details regarding the
implementation of the model are presented in section 3. The
wave packet simulations are presented and discussed in section
4, and section 5 ends the paper with concluding remarks and
outlook.

2. Theoretical Setup

The model of the DBP reaction dynamics described in the
preceding section presents a significant reduction in the dimen-
sionality of the problem; only 2 out of a total of 27 vibrational
degrees of freedom and 2 out of many electronic states9 are
considered. The simplicity of the model is a beauty but also
makes one wonder if it is possible to reproduce the experimental
results in such a simple framework; the reaction dynamics might
involve parameters essential for a theoretical description that
were not probed in the experiment. The aim of the present work
is not to achieve a quantitative correspondence between simula-
tion and experiment using a complex model. Instead, we want
to investigate how adequately the simple model can describe
the experimental results. This section describes how we set up
the theoretical framework for the wave packet propagations.

The corner stone in wave packet simulations is the time-
dependent Schrödinger equation

ip
∂

∂t
Ψ(q,t))HΨ(q,t) (1)

where the Hamiltonian H consists of a kinetic and a potential
energy operator. We start out by defining the nuclear coordinates
q and the corresponding kinetic energy operator (KEO). In
section 2.3, we define the representation of the electronic states
and the potential energy operator (PEO). For simulating the
C-Br dissociation, we include in the Hamiltonian a complex
absorbing potential (CAP), which will be described in section
2.4. In section 2.5, we end the description of the theoretical
setup by defining the equations of motion that are solved in the
wave packet propagation.

2.1. Nuclear Coordinates. In simulating molecular dynam-
ics, treating all internal nuclear coordinates of the system in a
fully quantum mechanical way quickly becomes computationally
prohibitive as the size of the system increases. The coordinates
can be divided into a set of active coordinates q each of which
is associated with an ab initio calculated potential energy surface
(PES) V(q, Q(q)) and a set Q(q) of inactive coordinates
considered as functions of the active ones.11 The active co-
ordinates in this work are the C-Br bond stretching coordinate
(R) and the torsion coordinate (D). We have only considered
the asymmetric stretch of a single C-Br bond as a symmetric
stretch would lead to products of extremely high energy
(trimethylene and two bromine atoms). Moreover, in such
systems where the symmetric dissociation of two bonds is
possible, the initial activation of a symmetric stretching will
eventually lead to branching into two asymmetric dissociations;12

here, we consider only one of them as they will lead to identical
products. The value of the D coordinate is defined as the dihedral
angle δ(Br1C2C3C4) (see Figure 1), which is kept equal to
δ(C2C3C4Br5) to ensure the symmetry of the torsion. The internal
coordinates of the H atoms bonded to C2 and C4 will be defined
such that D describes the torsion of the bromomethylene groups.

As the D coordinate corresponds to the lowest frequency
normal mode of DBP, it is reasonable to adopt the approximation
that all inactive coordinates relax instantaneously during the
torsion motion. We therefore model DBP as an adiabatically
constrained system in which the inactive coordinates are adjusted
to the actives ones.11

2.2. The Kinetic Energy Operator. The KEO can be
expressed in the active coordinates as follows13

T̂n(q))∑
ij

f2
ij(q)

∂
2

∂qi ∂ qj
+∑

i

f1
i(q)

∂

∂qi
+V(q) (2)

where V(q) is an extrapotential term that arises from the choice
of normalization convention of the wave function. In this work,
we will use the TNUM program14,15 that implements the
algorithm of Lauvergnat and Nauts for evaluating the f2, f1,
and V functions numerically exact.13 The power of TNUM is
that it allows for the definition of q in terms of curvilinear
coordinates. Furthermore, the inactive coordinates Q are im-
plicitly taken into account in the calculation of the KEO. The
inactive coordinates can be treated in several ways, among which
are the rigid (frozen) and adiabatically constrained models.13

These properties of TNUM are especially valuable for this work
as the alternative, an analytical definition of the KEO, would
be rather complex for a system at the size of DBP.

2.3. Electronic States. The representation of the electronic
states is very important in describing nonadiabatic molecular
dynamics because of the coupling between the states. In the

Figure 2. Sketch describing the reaction dynamics as interpreted from
the results of the DBP experiment.

Figure 3. The Kohn-Sham orbitals involved in the excitations n1 f
5px (a) and n2 f σ* (b) leading to the Rydberg and valence state,
respectively.
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adiabatic representation, the derivative operators in the KEO
are responsible for the coupling.16 In regions of the PES with
strongly avoided crossings, this derivative coupling can change
very abruptly by a small change in geometry, and in the case
of a conical intersection, the coupling even diverges.17 Therefore,
it is often more convenient to use a representation in which the
derivative coupling vanishes, a diabatic representation. For
polyatomic molecules, this is not possible to achieve, but an
approximate or quasidiabatic representation in which the deriva-
tive coupling is negligible can be constructed.18 In the diabatic
representation, the coupling between the electronic states is
represented as a potential coupling in the PEO.16

In this work, two approximately diabatic states are constructed
in a way that follows the ideas of Ruedenberg and Atchity.19

We form diabatic states from adiabatic ones, requiring unifor-
mity of the electronic character throughout the nuclear coordi-
nate space, thereby ensuring a vanishing derivative coupling.
Thus, naming the electronic states as Rydberg and valence in
the Introduction was implicitly an adoption of a diabatic
representation; the names refer to the uniform electronic

configuration of the diabatic states. In the following, we number
the Rydberg state as state 1 and the valence state as state 2.

2.4. Complex Absorbing Potential. The implementation of
an optical or complex absorbing potential (CAP) in the
Hamiltonian is a useful strategy for simulating dissociative
degrees of freedom.20,21 In this work, we use a CAP for
absorbing the wave function in the asymptotic region of the R
coordinate, thereby simulating the C-Br bond breakage. The
CAP has the following simple form

Ŵ(R)) {-i(R-Rd)
2 RgRd

0 R < Rd
(3)

where Rd is the starting point of the CAP.

2.5. Equations of Motion. In the wave packet propagations
done in this work, we solve the time-dependent Schrödinger
equation, eq 1, in the diabatic representation of the electronic
states. Thus, Ψ(q, t) is a vector representing the nuclear wave
packets in the Rydberg and valence state, and H is the matrix
of Hamiltonian operators in the diabatic electronic representa-
tion. The diagonal elements of this matrix define the Hamiltonian
for the isolated diabatic state i ) 1, 2 as Hii ) T̂n(q) +
Vii(q, Q(q)) + Ŵ(R), and the off-diagonal elements Hij )
Vij(q, Q(q)) define the coupling between the states. The functions
Vij (i, j ) 1, 2) are the matrix elements of the PEO in the diabatic
electronic representation.

3. Computational Details

All ab initio calculations are done using the Gaussian 98
program package.22 According to electron diffraction studies,
DBP is most stable in the gauche-gauche conformation.23 As
in the work of Kötting et al., the gauche-gauche conformation
will therefore be the starting point of the calculations.

3.1. Nuclear Coordinates and the Kinetic Energy Opera-
tor. We have implemented the adiabatically constrained model
by optimizing the ground-state geometry of DBP as a function
of R and D using B3LYP/6-31+G(d). Although the rigorous
approach would be to relax the coordinates in the excited state,
we believe that relaxing them at the ground state is better than
freezing the coordinates. By inspecting every inactive coordi-
nate, we find that only some are varying significantly. Thus,
we consider as adiabatically constrained the coordinates
∠ (Br1C2C3), ∠ (C2C3C4), and ∠ (C3C4Br5). These coordinates
are among the ones that exhibit the largest standard deviation
(2.6-4.7%) relative to their mean value for 1.7 e R e 2.4 Å
and 19° e D e 85°. The three valence angles increase as the D
coordinate decreases to compensate for the repulsion between
the bromine atoms. The rest of the inactive coordinates are
considered frozen at the ground-state equilibrium geometry for
the gauche-gauche conformation.

When implementing adiabatically constrained coordinates in
TNUM, the exact derivatives up to third order with respect to
the active coordinates have to be known.13 Thus, the values of
the adiabatically constrained coordinates have to be fit to an

TABLE 1: The optimized parameters of the functions used to fit the raw diabatic PESs (values in a.u.)

state parameters

1 A R Req D2
eq E1 a1 b1 c1 d1

0.1050 0.8628 3.751 0.7990 0.2881 0.07260 -0.06320 -0.1077 0.1286

2 B � D2
eq E2 a2 b2 c2 d2

5.752 1.137 1.362 0.2227 0.01108 0.1007 0.2538 0.1394

Figure 4. Isoenergy contours (in hartree) of the diabatic PESs of the
Rydberg state (dotted lines) and the valence state (full lines).

Figure 5. Energy contours (in hartree) of the lower adiabatic PES.
The diabatic seam obtained from the scans of the adiabatic PESs along
the R coordinate (see text) is shown as a dotted black line.

TABLE 2: Parameters Used in the Wave Packet
Propagation (values in au)

parameter R D

init. center 3.761 1.135
init. width 0.2 0.1
CAP starting point 4.79
Grid min 3.213 0.3316
Grid max 5.102 1.588
no. of basis functions 55 80
no. of grid points 70 100
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analytical expression. Here, we have used independent third-
order polynomials in R and D.

By inspecting the behavior of the f2
ij functions, it can be

possible to simplify the expression in eq 2 by approximating
the f2

ij functions by constants if their variation is low.10 To
preserve the hermiticity of the KEO, this means that the f1

i

functions have to be set to zero. The complexity of the KEO is
then significantly reduced because it no longer depends on q.
In the present case, this approximation is not valid as the f2

ij

functions for the coordinates R and D are far from being
constant. We have therefore used the varying functions in the
wave packet simulations.

3.2. The Diabatic PESs. This section describes the way the
PESs corresponding to the approximately diabatic Rydberg and
valence states are constructed. Assuming two-photon excitation
and comparing the experimental photon energy with the
calculation of the excited states of DBP using TDB3LYP/6-
31+G(d), Kötting et al. claim that the orbitals involved in the
transition to the initially excited state are the lone pair n1 and
the Rydberg 5px orbitals shown in Figure 3a.9 From the
calculation of excited-state PESs along the R coordinate, Kötting
et al. find that the Rydberg state is crossed by an n2 f σ*

valence state; the orbitals involved are shown in Figure 3b.
Because of the symmetry of DBP, the n2 and σ* orbitals are
pairwise quasidegenerate when the C-Br bond lengths are
equal. However, for geometries in which the bond lengths differ,
the orbitals can (to a certain extent) be assigned to each of the
bonds. Thus, the orbitals shown in Figure 3b are associated with
a geometry where the C-Br bond around which the orbitals
are localized is the longest one. This is in good agreement with
intuition in that the lone-pair electron that is involved in the
bond breakage is excited from the bromine that is repelled from
the rest of the molecule.

Kötting et al. calculated the excited states in 1D scans along
the R and D coordinate.9 To get the diabatic PESs needed in
this work, we calculate the excited states of DBP along the full
two-dimensional (R,D) grid used in the wave packet propagation.
We have performed these ab initio calculations following
Kötting et al. in using TDB3LYP/6-31+G(d) to calculate the
excited states of ground-state geometries optimized using
B3LYP/6-31+G(d).

From the calculated excited states, we want to select the ones
having the most n1f 5px character to get the diabatic PES of the
Rydberg state. Whereas the Rydberg 5px orbital is virtually
unaltered by changes in the geometry, the opposite is true for the
bromine lone-pair orbitals that interact extensively with each other.
We therefore first selected the states that arise from excitation from
each of the four highest-lying lone-pair orbitals (DBP has a total
of six lone pairs, three on each bromine atom) into the Rydberg
5px orbital. By inspecting the Kohn-Sham orbitals involved, we
chose the excitation energies that correspond to the states having
the most n1 f 5px character. The sum of these energies and the
corresponding ground-state energies constitute a raw form of the
diabatic PES of the Rydberg state. The selection of excitation
energies is not always unambiguous, though. For nearly sym-
metrical geometries where the stretched C-Br bond is no longer
than about 2.2 Å, the identification of the n1 orbital among the
four lone-pair orbitals is possible. However, for longer bond lengths,
the identification becomes ambiguous. In such cases, we chose the
state with the excitation energy that resulted in the smoothest form
of the raw PES.

A raw form of the diabatic PES of the n2f σ* valence state
was constructed in a similar way. Here, we first selected states
arising from excitation from the two lowest-lying lone pairs to
the two C-Br antibonding orbitals of DBP. From these states,
we selected the ones with the most n2 f σ* character. In
ambiguous cases, the excitation energies that resulted in the
smoothest PES were chosen.

The raw diabatic PESs were fitted to the following analytical
expressions

Figure 6. Isodensity contours of the wave packets |Ψ1(R, D, t)|2 (left) and |Ψ2(R, D, t)|2 (right). The contour levels are {12, 16, 20, 24} au for Ψ1

and {0.018, 0.024, 0.030, 0.036} au for Ψ2. Also shown are isoenergy contours at {0.293, 0.297} hartree for the diabatic PES. The snapshots are
separated by 4000 au (97 fs).

Figure 7. The absolute value of the autocorrelation function, eq 7.

Figure 8. The Rydberg (red), valence (green), and total (black)
population as a function of time. The blue curve is the best fit of the
total population to a single exponential decay.
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V11(R, D))A(1- e-R(R-Req))2 +P1(D-D1
eq)

V22(R, D))Be-�R +P2(D-D2
eq)

(4)

which represent the R coordinate by a Morse oscillator in the
Rydberg state and an exponentially repulsive potential in the
valence state. The D coordinate is represented by an anharmonic
potential Pi(q) ) Ei + aiq2 + biq3 + ciq4 + diq5 in both states.
The optimized parameters are found in Table 1. Figure 4 shows
the energy contours of the diabatic PESs.

3.3. The Diabatic Coupling. As noted above, the interaction
between two electronic states is represented as a potential
coupling V12(q, Q(q)) in the diabatic representation. We ap-
proximate the diabatic coupling by a constant V12. This section
describes how the value of the constant is determined.

In including only the Rydberg and the valence state in the
model, we have neglected the coupling to all other electronic
states and treated DBP as a two-state system. In such a system,
the relation between the adiabatic and diabatic PESs is24

∆V adia ) √(∆V dia)2 + 4(V12)
2 (5)

where ∆Vadia and ∆Vdia refer to the energy gap between the
adiabatic and diabatic PESs, respectively. For geometries in
which the diabatic PESs cross, that is, ∆Vdia ) 0, eq 5 reduces
to ∆Vadia ) 2V12. At these geometries, the value of the diabatic
potential coupling V12 is thus proportional to the energy gap
between the adiabatic PESs. This simple way of estimating V12

is exploited by scanning the R coordinate in very small steps
as to locate the point where the energy gap between the adiabatic
PESs is smallest. To select the right adiabatic states among the
many states present, we inspect the electronic character of the
states just as when constructing the approximately diabatic PESs.
The two-state approximation is, of course, a very rough one,
and the interaction between the adiabatic PESs corresponding
to the Rydberg and valence diabatic states is influenced by
nonadiabatic interaction with other states. We try to level out
this effect by doing the scan for several values of the D
coordinate representing the entire range of the grid used in the
wave packet simulations and approximate V12 by the average
of the coupling values obtained from the different scans. This
gives a value of V12 of 4.0 × 10-4 hartree. The lower adiabatic
PES obtained from the diabatic PESs with this value of V12 is
depicted in Figure 5. Also shown in the figure is the diabatic
crossing seam as obtained from the scans. We see that, although
the construction of the diabatic PESs and coupling is quite
approximate, the crossing seam of the fitted PESs is in good
agreement with the one obtained from the ab initio data.

4. Wave packet Propagations

The wave packet propagations were done using the ElVibRot
program,25,26 which is interfaced with TNUM. The wave
function was discretized on a grid using the discrete variable
representation (DVR) of the wave function.27 We used a Fourier
basis set for the R coordinate and sine functions as the basis set
for the D coordinate. These basis functions resulted in an
equidistant DVR grid in both coordinates. In solving eq 1, the
Chebychev polynomial expansion of the evolution operator was
used.28 The propagations were done using a time step of 1.2 fs
and a total propagation time of 5 ps.

According to the model of the DBP dynamics, the initially
excited state is the Rydberg state, and therefore, the initial
diabatic wave packet vector Ψ0(R, D) only has a component in
state 1. Using the Condon approximation and the ultrashort

duration of the pump pulse, the initial wave packet on the
Rydberg state is well approximated by the vibrational ground-
state wave function of the electronic ground state.24 Ap-
proximating the vibrations of DBP by harmonic oscillators, the
initial wave packet is proportional to a product of Gaussian
functions in the R and D coordinates29

Ψ1
0(R, D) ∝ e-(R - R0/σR)2 e-(D - D0/σD)2 (6)

The centers R0 and D0 of the Gaussian functions are chosen
according to a ground-state geometry optimization of DBP using
B3LYP/6-31G(d). The width parameters σR and σD are chosen
somewhat arbitrarily but are similar to the results obtained from
a relaxation propagation30 that we have conducted on the
ground-state PES calculated using B3LYP/6-31+G(d). Table
2 collects the parameters used in the propagation.

4.1. Results and Discussion. Figure 6 shows isodensity
contours of the two diabatic nuclear wave packets |Ψ1(R, D, t)|2

and |Ψ2(R, D, t)|2 in time intervals of 4000 au (97 fs) after the
start of the propagation. The left part of Figure 6 shows the
wave packet in the Rydberg state moving along the torsion
coordinate for approximately half of the vibrational period. The
right part of Figure 6 shows the corresponding evolution of the
wave packet in the valence state which will be discussed later.
In the second half of the period, the behavior of the wave packets
is virtually reversed and therefore not shown. The simulated
vibrational period of the torsion coordinate D is derived from
the autocorrelation function

C(t)) 〈Ψ0|Ψ(t)〉 (7)

Figure 7 shows the absolute value of the function. A closer look
reveals that it peaks at multiples of 578 fs, which is thus the
simulated vibrational period of the torsion motion. This is in
quite good agreement with the experimentally observed 680 fs
with a deviation of 15%. We observe that the width of the peaks
of the autocorrelation increases for each recurrence. This
dephasing of the wave packet is caused by the anharmonicity
of the potential in the D coordinate. The broadening of the wave
packet influences the decay dynamics of the Rydberg state,
which we will discuss in the following.

The simulated time scale for the bond breakage can be derived
from the populations shown in Figure 8. When part of the wave
packet is transferred from the Rydberg to the valence state, it
gets absorbed by the CAP very fast (∼40 fs) compared to the
time scale of the transfer. Therefore, the population of the
valence state is kept at a minimum, and the total population
(norm) is thus virtually equivalent to the Rydberg population
〈Ψ1(t)|Ψ1(t)〉. Fitting the total population to a single exponential
decay gives a decay time of 1.9 ps. Considering the simple
model of the diabatic PESs and coupling, this is in good
agreement with the experimentally observed time of 2.5 ps with
a deviation of 24%.

The results presented so far show that the wave packet simulation
reproduces the experimental time scales to a good extent. To obtain
further insight into the dissociation process, we conducted a
propagation including only the lower adiabatic PES. In this case,
the dissociation occurs within less than 50 fs, corresponding to
motion on an effectively repulsive surface. This shows that it is
the nonadiabatic trapping of the wave packet in the bound Rydberg
diabatic state that delays the dissociation.

We can further elaborate on the mechanism of the dissociation
by noticing the step-like feature superimposed on the single
exponential decay of the Rydberg population shown in Figure
8. The feature is caused by the topology of the diabatic PESs
as shown in Figure 6; in the Franck-Condon region of the PES,
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the wave packet is close to the diabatic crossing seam. However,
because the diabatic crossing seam is not exactly parallel to
the D coordinate, the distance to the crossing seam increases
as the wave packet moves along the D coordinate away from
the Franck-Condon region. It therefore experiences that the
effect of the diabatic coupling is decreasing. Thus, the rate of
population transfer from the Rydberg to the valence state and
thereby the rate of dissociation decreases. When completing a
vibrational period and returning to the starting position, the wave
packet experiences an increasing effect of the diabatic coupling,
and the rate increases. We can therefore conclude that the rate
of bond breakage depends on the motion along the torsion
coordinate only as far as regards the electronic coupling and
thus that IVR is not involved in the photodissociation of DBP.

For longer time scales than that shown in Figure 6, the
broadening of the wave packet mentioned above means that it
experiences an averaged effect of the diabatic coupling of a larger
region of the PES along the D coordinate. The decay rate is
therefore correspondingly averaged. This levels out the step-like
feature in the decay of the Rydberg state, which, after about 3 ps,
is virtually a plain single exponential decay; see Figure 8.

4.2. Remarks Regarding the KEO. We have tried to
increase the number of adiabatically constrained inactive
coordinates from the three valence angles mentioned in section
3.1, but it does not influence the propagation; the results are
virtually the same. This shows that the construction of the KEO
is “converged” in the sense that the rest of the inactive
coordinates can effectively be considered as frozen.

It is also interesting to note that we get similar results to the
ones reported above (vibrational period: 718 fs; decay time:
2.3 ps) by considering all inactive coordinates frozen in the
construction of the KEO, although such a KEO is inconsistent
with the construction of the PESs from relaxed coordinates.

Even when approximating the f 2
ij functions, which are far from

being constant, by their average value on the (R,D) grid and
setting the f 1

i functions (and V) to zero, we obtain results close
to the ones reported above (vibrational period: 546 fs; decay
time: 2.1 ps).31

5. Conclusion and Outlook

By conducting wave packet simulations within the framework
of the interpretation model of Kötting et al.,9 we have been able
to reproduce the results of the DBP experiment to a good extent;
with a simulated period of the torsional vibration of 578 fs and
a time scale for C-Br bond breakage of 1.9 ps, the deviation
from the experimental results is within 24%. Of course, this
does not prove that the model is correct, but the simulation
results support the validity of the model. Besides, the wave
packet simulations have added further insight into the dynamics
as they show that the dissociation is limited by the coupling of
two PESs; the motion along the torsion coordinate influences
the effect of the coupling and thus the dissocation.

Hence, the dissociation of DBP is similar to the one observed
in pump-probe experiments on NaI in which the wave packet
oscillates in a bound PES and dissociates in the region of the
PES where the coupling to a repulsive PES is significant.2-4

The dynamics of DBP is a little more complex in that the
oscillation of the wave packet which influences the coupling to
the repulsive PES takes place along a nonreactive coordinate
perpendicular to the dissociation coordinate.
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